0

Full Content is available to subscribers

Subscribe/Learn More  >

To MACT or Not to MACT: Mercury Emissions From Waste-to-Energy and Coal-Fired Power Plants

[+] Author Affiliations
Nickolas J. Themelis, Nada Assaf-Anid

Columbia University, New York, NY

Paper No. NAWTEC13-3170, pp. 203-209; 7 pages
doi:10.1115/NAWTEC13-3170
From:
  • 13th Annual North American Waste-to-Energy Conference
  • 13th North American Waste-to-Energy Conference
  • Orlando, Florida, USA, May 23–25, 2005
  • Conference Sponsors: Solid Waste Processing Division
  • ISBN: 0-7918-3756-4
  • Copyright © 2005 by ASME

abstract

During the combustion of fuel in Waste-to-Energy (WTE) and coal-fired power plants, all of the mercury input in the feed is volatilized. The primary forms of mercury in stack gas are elemental mercury (Hg0 ) and mercuric ions (Hg2+ ) that are predominantly found as mercuric chloride. The most efficient way to remove mercury from the combustion gases is by means of dry scrubbing, followed by activated carbon injection and a fabric filter baghouse. Back in 1988, the U.S. WTE power plants emitted about 90 tons of mercury (Hg). By 2003, implementation of the EPA Maximum Achievable Control Technology (MACT) standards, at a cost of one billion dollars, reduced WTE mercury emissions to less than one ton of mercury. EPA now considers coal-fired power plants to be the largest remaining anthropogenic source of mercury emissions. Approximately 800 million short tons of coal, containing nearly 80 short tons of Hg are combusted annually in the U.S. for electricity production. About 40% of this amount is presently captured in the gas control systems of coal-fired utilities. Since the concentration of mercury in U.S. coal is ten times lower than in the MSW feed and the volume of gas to be cleaned 55 times higher, the cost of implementing MACT by the U.S. coal-fired utilities is estimated to be about $25 billion. However, when this retrofit cost is compared to the total capital investment and revenues of the two industries, it is concluded that MACT should be affordable. Per kilogram of mercury to be captured, the cost of MACT implementation by the utilities will be twenty times higher than was for the WTE industry. However, implementation of MACT by the utilities will also reduce the emissions of other gaseous contaminants and of particulate matter.

Copyright © 2005 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In