Full Content is available to subscribers

Subscribe/Learn More  >

Two-Phase Flow Patterns During Microchannel Vaporization of CO2 at Near-Critical Pressures

[+] Author Affiliations
Jostein Pettersen

Norwegian University of Science and Technology, Trondheim, Norway

Paper No. ICMM2003-1010, pp. 93-102; 10 pages
  • ASME 2003 1st International Conference on Microchannels and Minichannels
  • 1st International Conference on Microchannels and Minichannels
  • Rochester, New York, USA, April 24–25, 2003
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 0-7918-3667-3
  • Copyright © 2003 by ASME


Carbon dioxide (CO2 / R-744) is receiving renewed interest as a refrigerant, in many cases based on systems with microchannel heat exchangers that have high pressure capability, efficient heat transfer, and compact design. A good understanding of two-phase flow of evaporating CO2 in microchannels is needed to analyze and predict heat transfer. A special test rig was built in order to observe two-phase flow patterns, using a horizontal quartz glass tube with ID 0.98 mm, externally coated by a transparent resistive film. Heat flux was obtained by applying DC power to the film, and flow patterns were recorded at 4000 or 8000 frames per second by a digital video camera. Flow patterns were recorded for temperatures 20°C and 0°C, and for mass flux ranging from 100 to 580 kgm−2 s−1 . The observations showed a dominance of intermittent (slug) flow at low x, and wavy annular flow with entrainment of droplets at higher x. At high mass flux, the annular/entrained flow pattern could be described as dispersed. The aggravated dryout problem reported from heat transfer experiments at high mass flux could be explained by increased entrainment. Stratified flow was not observed in the tests with heat load. Bubble formation and growth could be observed in the liquid film, and the presence of bubbles gave differences in flow pattern compared to adiabatic flow. The flow pattern observations did not fit generalized maps or transition lines showed in the literature.

Copyright © 2003 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In