Full Content is available to subscribers

Subscribe/Learn More  >

Photocatalytic Oxidation of Toluene in Water From an Algae Pond With High Dissolved Oxygen Content

[+] Author Affiliations
Sanjay Vijayaraghavan, D. Y. Goswami

University of Florida, Gainesville, FL

Paper No. SED2002-1061, pp. 261-267; 7 pages
  • ASME Solar 2002: International Solar Energy Conference
  • Solar Energy
  • Reno, Nevada, USA, June 15–20, 2002
  • Conference Sponsors: Solar Energy Division
  • ISBN: 0-7918-1689-3
  • Copyright © 2002 by ASME


Water in well-mixed ponds containing photosynthetic algae has been observed to have an extremely high Dissolved Oxygen (DO) content. Up to four times saturation levels of DO have been recorded. Since DO is known to have an important role in the photocatalytic oxidation of organic contaminants in water, it was hypothesized that a faster rate of contaminant destruction would be observed in water drawn from algae ponds supersaturated with DO. In order to verify this hypothesis a bench scale, batch type photoreactor was constructed. Some baseline tests were performed to investigate the influence of UV intensity, water pH and DO content on the photocatalytic destruction of toluene in water. An array of ultraviolet “blacklight” lamps in a lamp box was used to simulate solar ultraviolet radiation. First-order reaction rate constants were calculated from the destruction data, using a kinetic model proposed earlier. The reaction was found to proceed forward equally fast at pH 4 and 10. A power law relation was derived for the reaction rate dependence on UV intensity. Presence of DO in the water was found to be required for the reaction to go forward. Water from an algae pond, supersaturated with dissolved oxygen was spiked with toluene and destruction tests were then conducted in the same reactor. These tests did not show the expected improvement in destruction rates.

Copyright © 2002 by ASME
Topics: oxidation , Oxygen , Water



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In