0

Full Content is available to subscribers

Subscribe/Learn More  >

On Indirectly Irradiated Solar Receiver-Reactors for High-Temperature Thermochemical Processes

[+] Author Affiliations
Christian Wieckert, Anton Meier

Paul Scherrer Institute, Villigen, Switzerland

Aldo Steinfeld

ETH-Swiss Federal Institute of Technology, Zurich, Switzerland

Paper No. SED2002-1059, pp. 251-255; 5 pages
doi:10.1115/SED2002-1059
From:
  • ASME Solar 2002: International Solar Energy Conference
  • Solar Energy
  • Reno, Nevada, USA, June 15–20, 2002
  • Conference Sponsors: Solar Energy Division
  • ISBN: 0-7918-1689-3
  • Copyright © 2002 by ASME

abstract

A solar receiver-reactor concept for high-temperature thermochemical applications involving gas and condensed phases is presented. It features two cavities in series. The inner cavity is an enclosure, e.g. made of graphite, with a small aperture to let in concentrated solar power. It serves as the solar receiver, radiant absorber, and radiant emitter. The outer cavity is a well-insulated enclosure containing the inner cavity. It serves as the reaction chamber and is subjected to thermal radiation from the inner cavity. The advantages of such a two-cavity reactor concept are outlined. A radiation heat transfer analysis based on the radiosity enclosure theory is formulated and results are presented in the form of generic curves that indicate the design constraints. High energy absorption efficiency can be achieved by minimizing the aperture area, by maximizing the size of the inner cavity, and by constructing it from a material of high emissivity.

Copyright © 2002 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In