Full Content is available to subscribers

Subscribe/Learn More  >

Aerodynamic Simulations of Wind Turbines Operating in Atmospheric Boundary Layer With Various Thermal Stratifications

[+] Author Affiliations
Cedric Alinot, Christian Masson

Ecole de Technologie Superieure, Montreal, QC, Canada

Paper No. WIND2002-42, pp. 206-215; 10 pages
  • ASME 2002 Wind Energy Symposium
  • ASME 2002 Wind Energy Symposium
  • Reno, Nevada, USA, January 14–17, 2002
  • Conference Sponsors: ASME
  • ISBN: 1-56347-476-X
  • Copyright © 2002 by The American Institute of Aeronautics and Astronautics, Inc. and ASME


This paper presents a numerical method for performance predictions of wind turbines immersed into stable, neutral, or unstable atmospheric boundary layer. Tile flowfield around a turbine is described by the Reynolds’ averaged Navier-Stokes equations complemented by the k-ε turbulence model. The density variations are introduced into the momentum equation using the Boussinesq approximation and appropriate buoyancy terms are included into the k and ε equations. An original expression for the closure coefficient related to the buoyancy production term is proposed in order to improve the accuracy of the simulations. The turbine is idealized as actuator disk surface, on which external surficial forces exerted by the turbine blade on the flow are prescribed according to the blade element theory. The resulting mathematical model has been implemented in FLUENT. The results presented in the paper include the power output and wake development under various thermal stratifications of an isolated wind turbine. In stable stratification, the power output is 4% lower than in neutral condition, while in unstable situation, the power is 3% larger. The predicted wake velocity defects are qualitatively in agreement with experimental observations.

Copyright © 2002 by The American Institute of Aeronautics and Astronautics, Inc. and ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In