0

Full Content is available to subscribers

Subscribe/Learn More  >

Transient Analysis of Heat Conduction in Orthotropic Medium by the DQEM and EDQ Based Time Integration Schemes

[+] Author Affiliations
Chang-New Chen

National Cheng Kung University, Tainan, Taiwan

Paper No. PVP2003-1900, pp. 151-160; 10 pages
doi:10.1115/PVP2003-1900
From:
  • ASME 2003 Pressure Vessels and Piping Conference
  • Computer Technology and Applications
  • Cleveland, Ohio, USA, July 20–24, 2003
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 0-7918-1699-0
  • Copyright © 2003 by ASME

abstract

The transient heat conduction in orthotropic medium is solved by using the DQEM to the spacial discretization and EDQ to the temporal discretization. In the DQEM discretization, DQ is used to define the discrete element model. Discrete transient equations defined at interior nodes in all elements, transition conditions defined on the inter-element boundary of two adjacent elements and boundary conditions at the structural boundary form a transient equation system at a specified time stage. The transient equation system is solved by the direct time integration schemes of time-element by time-element method and stages by stages method which are developed by using EDQ and DQ. Numerical results obtained by the developed numerical algorithms are presented. They demonstrate the developed numerical solution procedure.

Copyright © 2003 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In