0

Full Content is available to subscribers

Subscribe/Learn More  >

Study of Effective Elastic Moduli of Cracked Solid

[+] Author Affiliations
Young H. Park, Wesley Morgan

New Mexico State University, Las Cruces, NM

Paper No. PVP2003-1897, pp. 129-133; 5 pages
doi:10.1115/PVP2003-1897
From:
  • ASME 2003 Pressure Vessels and Piping Conference
  • Computer Technology and Applications
  • Cleveland, Ohio, USA, July 20–24, 2003
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 0-7918-1699-0
  • Copyright © 2003 by ASME

abstract

In this paper, effective moduli of cracked solid material were investigated. An analytical approach is discussed for a cracked solid containing randomly oriented inclusions by using elastic potential and a standard tensorial basis. A numerical simulation of the testing of mechanical responses of samples of cracked solid material (porous material) is also carried out. The numerical scheme in this work will focus mainly on numerical modeling of the observed behavior, in particular, the dependence of the macroscopic material properties on the porocity.

Copyright © 2003 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In