0

Full Content is available to subscribers

Subscribe/Learn More  >

Elasto-Plastic Behavior of Polycrystalline Steel at Mesoscopic and Macroscopic Levels

[+] Author Affiliations
Marko Kovač, Igor Simonovski, Leon Cizelj

Jožef Stefan Institute, Ljubljana, Slovenia

Paper No. PVP2003-1896, pp. 123-128; 6 pages
doi:10.1115/PVP2003-1896
From:
  • ASME 2003 Pressure Vessels and Piping Conference
  • Computer Technology and Applications
  • Cleveland, Ohio, USA, July 20–24, 2003
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 0-7918-1699-0
  • Copyright © 2003 by ASME

abstract

An important drawback of the classical continuum mechanics is idealization of inhomogenous microstructure of materials. Approaches, which model material behavior on mesosocopic level and can take inhomogenous microstructure of materials into the account, typically appeared over the last decade. Nevertheless, entirely anisotropic approach towards material behavior of a single grain is still not widely used. The proposed approach divides the polycrystalline aggregate into a set of grains by utilizing Voronoi tessellation (random grain structure). Each grain is assumed to be a monocrystal with random orientation of crystal lattice. Mesoscopic response of grains is modeled with anisotropic elasticity and crystal plasticity. Strain and stress fields are calculated using finite element method. Material parameters for pressure vessel steel 22 NiMoCr 3 7 are used in analysis. The analysis is limited to 2D models. Applications of the proposed approach include (a) the estimation of the minimum component/specimen size needed for the homogeneity assumption to become valid and (b) the estimation of the correlation lengths in the resulting mesoscopical stress fields, which may be used in well-established macroscopical material models. Both applications are supported with numerical examples and discussion of numerical results.

Copyright © 2003 by ASME
Topics: Steel

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In