0

Full Content is available to subscribers

Subscribe/Learn More  >

Transforming Design Education by Design

[+] Author Affiliations
Eli Kolberg

Tel Aviv University, Tel Aviv, Israel

Yoram Reich

Stanford University, Stanford, CA

Ilya Levin

Bar Ilan University

Paper No. DETC2005-85390, pp. 41-50; 10 pages
doi:10.1115/DETC2005-85390
From:
  • ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 5a: 17th International Conference on Design Theory and Methodology
  • Long Beach, California, USA, September 24–28, 2005
  • Conference Sponsors: Design Engineering Division and Computers and Information in Engineering Division
  • ISBN: 0-7918-4742-X | eISBN: 0-7918-3766-1
  • Copyright © 2005 by ASME

abstract

Design is a contextualized activity influenced by many factors. In order to understand or teach it, a holistic approach that involves students in actual design activities is required. Often, such educational setup is called problem or project-based learning (PBL). There are many views about implementing PBL. Our approach to design education is different than others in the way we treat design courses as products with constraints and objectives. Following our experience in previous design courses, we set to create the best design course possible in our particular context by carefully designing it using design tools developed in design research. We elaborated the course objectives; observed and analyzed failures of design projects in previous courses; and proposed new design methods that could remedy those failures. The collection of potential design methods was evaluated and six methods were selected as the backbone of the design curriculum. The curriculum we designed was implemented in a mechatronic course for high school students. Careful study with several groups including control demonstrated that our design improves the existing course. We describe the course design; provide some details about the design methods that comprise the design curriculum and some examples of using these methods in the course to ground the discussion. A reader unfamiliar with mechatronic could skip these descriptions. The contribution of this paper is twofold. First, we show that there is no single general design methodology. For different products and contexts, different design methodologies should be designed. If we use design methods developed in design research, the methodologies could prove successful. Second, and more specifically, we present a new, possible, and successful design methodology for mechatronics. We are not aware of such comprehensive approach in the literature.

Copyright © 2005 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In