0

Full Content is available to subscribers

Subscribe/Learn More  >

Application of a Viscous Flow Methodology to the NREL Phase VI Rotor

[+] Author Affiliations
Guanpeng Xu, Lakshmi N. Sankar

Georgia Institute of Technology, Atlanta, GA

Paper No. WIND2002-30, pp. 83-93; 11 pages
doi:10.1115/WIND2002-30
From:
  • ASME 2002 Wind Energy Symposium
  • ASME 2002 Wind Energy Symposium
  • Reno, Nevada, USA, January 14–17, 2002
  • Conference Sponsors: ASME
  • ISBN: 1-56347-476-X
  • Copyright © 2001 by L. Sankar and ASME

abstract

A numerical technique has been developed for efficiently simulating fully three-dimensional viscous fluid flow around horizontal axis wind turbines (HAWT). In this approach, the viscous region surrounding the blades is modeled using 3-D unsteady Navier-Stokes equations. The inviscid region away from the boundary layer and the wake is modeled using potential flow. The concentrated vortices that emanate from the blade tip are treated as piecewise straight line segments that are allowed to deform and convect at the local flow velocity. Biot-Savart law is used to estimate the velocity field associated with these vortices. Calculations are presented under axial wind conditions for a NREL two-bladed rotor, known as the Phase VI rotor, tested at the NASA Ames Research Center. Good agreement with the measurements is found. The computed results are used to develop improved engineering models for the loss of lift at the blade tip, and for the delay in the stall angle at inboard locations. The improved models are incorporated in a blade element-momentum (BEM) analysis to study the post-stall behavior of a three-bladed rotor tested at NREL.

Copyright © 2001 by L. Sankar and ASME
Topics: Viscous flow , Rotors

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In