0

Full Content is available to subscribers

Subscribe/Learn More  >

Integrated Framework for Design Optimization Under Aleatory and/or Epistemic Uncertainties Using Adaptive-Loop Method

[+] Author Affiliations
Byeng D. Youn

University of Detroit Mercy, Detroit, MI

Paper No. DETC2005-85253, pp. 1253-1261; 9 pages
doi:10.1115/DETC2005-85253
From:
  • ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 2: 31st Design Automation Conference, Parts A and B
  • Long Beach, California, USA, September 24–28, 2005
  • Conference Sponsors: Design Engineering Division and Computers and Information in Engineering Division
  • ISBN: 0-7918-4739-X | eISBN: 0-7918-3766-1
  • Copyright © 2005 by ASME

abstract

In last two decades, significant attentions have been paid to develop design optimization methodologies under various uncertainties: reliability-based design optimization (RBDO), possibility-based design optimization (PBDO), etc. As a result, a variety of methods of uncertainty-based design optimization have been proposed and are mainly catagorized as: parallel-loop method, serial-loop method, and single-loop method. It has been reported that each method has its own strong and weak points. Thus, this paper attempts to understand various methods better, and proposes to develop an integrated framework for uncertainty-based design optimization. In short, the integrated design framework timely involves three phases (deterministic design optimization, parallel-loop method, single-loop method) to maximize numerical efficiency without losing computational stability and accuracy in the process of uncertainty-based design optimization. While the parallel-loop method maintains numerical stability well with a minimal computation, deterministic design optimization and single-loop method will improve numerical efficiency at the beginning and end of uncertainty-based design optimization. Thus, the proposed method is called adaptive-loop method. It will be shown that integrated framework using the proposed method is applicable for various design optimization methodologies under aleatory or epistemic uncertainties, such as RBDO, PBDO, etc. Examples are used to demonstrate the effectiveness of integrated framework using the adaptive-loop method in terms of numerical efficiency.

Copyright © 2005 by ASME
Topics: Design , Optimization

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In