0

Full Content is available to subscribers

Subscribe/Learn More  >

A Non-Cyclic Method for Plastic Shakedown Analysis

[+] Author Affiliations
W. Reinhardt

Babcock & Wilcox Canada, Cambridge, ON, Canada

Paper No. PVP2003-1889, pp. 51-59; 9 pages
doi:10.1115/PVP2003-1889
From:
  • ASME 2003 Pressure Vessels and Piping Conference
  • Computer Technology and Applications
  • Cleveland, Ohio, USA, July 20–24, 2003
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 0-7918-1699-0
  • Copyright © 2003 by ASME

abstract

Shakedown is a cyclic phenomenon, and for its analysis it seems natural to employ a cyclic analysis method. Two problems are associated when this direct approach is used in finite element analysis. Firstly, the analysis typically needs to be stabilized over several cycles, and the analysis of each individual cycle may need a considerable amount of computing time. Secondly, even in cases where a stable cycle is known to exist, the finite element analysis can show a small continuing amount of strain accumulation. For elastic shakedown, non-cyclic analysis methods that use Melan’s theorem have been proposed. The present paper extends non-cyclic lower bound methods to the analysis of plastic shakedown. The proposed method is demonstrated with several example problems.

Copyright © 2003 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In