0

Full Content is available to subscribers

Subscribe/Learn More  >

Towards Rapid Redesign: Pattern-Based Design Diagnostics for Large-Scale and Complex Redesign Problems

[+] Author Affiliations
Li Chen

United Technologies Research Center, East Hartford, CT

Ashish Macwan

University of Toronto, Toronto, ON, Canada

Paper No. DETC2005-84888, pp. 979-988; 10 pages
doi:10.1115/DETC2005-84888
From:
  • ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 2: 31st Design Automation Conference, Parts A and B
  • Long Beach, California, USA, September 24–28, 2005
  • Conference Sponsors: Design Engineering Division and Computers and Information in Engineering Division
  • ISBN: 0-7918-4739-X | eISBN: 0-7918-3766-1
  • Copyright © 2005 by ASME

abstract

This paper presents our continued research efforts towards developing a decomposition-based solution approach for rapid computational redesign to support agile manufacturing of evolutionary products. By analogy to the practices used for physical machines, the proposed approach involves two general steps: diagnosis and repair. This paper focuses on the diagnosis step. for which a two-phase decomposition method is developed. The first phase, called design dependency analysis, systematizes and reorganizes the intrinsic coupling structure of the existing design model by analyzing and reordering the design dependency matrix (DDM) used to represent the functional dependence and couplings inherent in the design model. The second phase, called redesign partitioning analysis, uses this result to generate alternative redesign pattern solutions through a three-stage procedure. Each pattern solution delimits the portions of the design model that need to be re-computed. An example problem concerning the redesign of an automobile powertrain is used for method illustration. Our seed paper has presented a method for selecting the optimal redesign pattern solution from the alternatives generated through redesign partitioning analysis, and a sequel paper will discuss how to generate a corresponding re-computation strategy and redesign plan (redesign shortcut roadmap).

Copyright © 2005 by ASME
Topics: Design

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In