0

Full Content is available to subscribers

Subscribe/Learn More  >

Design of Functionally Graded Structures for Enhanced Thermal Behavior

[+] Author Affiliations
Vincent Y. Blouin, Martin Oschwald, Yuna Hu, Georges M. Fadel

Clemson University, Clemson, SC

Paper No. DETC2005-85290, pp. 835-843; 9 pages
doi:10.1115/DETC2005-85290
From:
  • ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 2: 31st Design Automation Conference, Parts A and B
  • Long Beach, California, USA, September 24–28, 2005
  • Conference Sponsors: Design Engineering Division and Computers and Information in Engineering Division
  • ISBN: 0-7918-4739-X | eISBN: 0-7918-3766-1
  • Copyright © 2005 by ASME

abstract

Multi-material structures take advantage of beneficial properties of different materials to achieve an increased level of functionality. In an effort to reduce the weight of vehicle components such as brake disk rotors, which are generally made of cast iron, light materials such as aluminum alloys may be used. These materials, however, may lead to unacceptable temperature levels. Alternatively, functionally graded structures may offer a significant decrease in weight without altering thermal performance. The design of such structures is not trivial and is the focus of this paper. The optimization combines a transient heat transfer finite element code with a genetic algorithm. This approach offers the possibility of finding a global optimum in a discrete design space, although this advantage is balanced by high computational expenses due to many finite element analyses. The goal is to design a brake disk rotor for minimum weight and optimal thermal behavior using two different materials. Knowing that computational time can quickly become prohibitively high, strategies, such as finite element grouping to reduce the number of design variables and local mesh refinement, must be employed to efficiently solve the design problem. This paper discussed the strengths and weaknesses of the proposed design method.

Copyright © 2005 by ASME
Topics: Design

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In