Full Content is available to subscribers

Subscribe/Learn More  >

Non-Linear Free Vibrations of a Rotating Beam Carrying a Tip Mass With Rotary Inertia

[+] Author Affiliations
Ahmad A. Al-Qaisia

University of Jordan, Amman, Jordan

Paper No. PVP2002-1510, pp. 1-8; 8 pages
  • ASME 2002 Pressure Vessels and Piping Conference
  • Piping and Component Analysis and Diagnosis
  • Vancouver, BC, Canada, August 5–9, 2002
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 0-7918-4658-X
  • Copyright © 2002 by ASME


The non-linear, for each of the first three modes, of planar, large amplitude flexural free vibrations of a beam clamped with an angle to a rigid rotating hub and carrying a tip mass with rotary inertia are investigated. The shear deformation and rotary inertia effects are assumed to be negligible, but account is taken of axial inertia, non-linear curvature and the inextensibility condition. The Lagrangian dynamics in conjunction with the assumed mode method, assuming constant hub rotation speed, is utilized in deriving the non-linear unimodal temporal problem. The time transformation method is employed to obtain an approximate solution to the frequency-amplitude relation of the beam-mass free vibration, since the order of the nonlinear terms is not small which includes static and inertial geometric stiffening as well as inertial softening terms. Results in non-dimensional form are presented graphically, for the effect beam root-attachment angle, hub radius and the attached inertia element ratio on the variation of the natural frequency with vibration amplitude.

Copyright © 2002 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In