Full Content is available to subscribers

Subscribe/Learn More  >

Gaussian Process Meta-Models for Efficient Probabilistic Design in Complex Engineering Design Spaces

[+] Author Affiliations
Liping Wang, Srikanth Akkaram

GE Global Research Center, Niskayuna, NY

Don Beeson, Gene Wiggs

GE Transportation, Cincinnati, OH

Paper No. DETC2005-85406, pp. 785-798; 14 pages
  • ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 2: 31st Design Automation Conference, Parts A and B
  • Long Beach, California, USA, September 24–28, 2005
  • Conference Sponsors: Design Engineering Division and Computers and Information in Engineering Division
  • ISBN: 0-7918-4739-X | eISBN: 0-7918-3766-1
  • Copyright © 2005 by ASME


Probabilistic design in complex design spaces is often a computationally expensive and difficult task because of the highly nonlinear and noisy nature of those spaces. Approximate probabilistic methods, such as, First-Order Second-Moments (FOSM) and Point Estimate Method (PEM) have been developed to alleviate the high computational cost issue. However, both methods have difficulty with non-monotonic spaces and FOSM may have convergence problems if noise on the space makes it difficult to calculate accurate numerical partial derivatives. Use of design and Analysis of Computer Experiments (DACE) methods to build polynomial meta-models is a common approach which both smoothes the design space and significantly improves the computational efficiency. However, this type of model is inherently limited by the properties of the polynomial function and its transformations. Therefore, polynomial meta-models may not accurately represent the portion of the design space that is of interest to the engineer. The objective of this paper is to utilize Gaussian Process (GP) techniques to build an alternative meta-model that retains the properties of smoothness and fast execution but has a much higher level of accuracy. If available, this high quality GP model can then be used for fast probabilistic analysis based on a function that much more closely represents the original design space. Achieving the GP goal of a highly accurate meta-model requires a level of mathematics that is much more complex than the mathematics required for regular linear and quadratic response surfaces. Many difficult mathematical issues encountered in the implementation of the Gaussian Process meta-model are addressed in this paper. Several selected examples demonstrate the accuracy of the GP models and efficiency improvements related to probabilistic design.

Copyright © 2005 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In