Full Content is available to subscribers

Subscribe/Learn More  >

Knowledge Based Design Method for Fibre Metal Laminate Fuselage Panels

[+] Author Affiliations
B. Vermeulen, M. J. L. van Tooren

Delft University of Technology, Delft, The Netherlands

L. J. B. Peeters

Stork Fokker Aerospace, Papendrecht, The Netherlands

Paper No. DETC2005-84079, pp. 699-708; 10 pages
  • ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 2: 31st Design Automation Conference, Parts A and B
  • Long Beach, California, USA, September 24–28, 2005
  • Conference Sponsors: Design Engineering Division and Computers and Information in Engineering Division
  • ISBN: 0-7918-4739-X | eISBN: 0-7918-3766-1
  • Copyright © 2005 by Delft University of Technology


Fibre Metal Laminates (FML) are a member of the hybrid materials family, consisting of alternating metal layers and layers of fibres embedded in a resin. Improved damage resistance and tolerance result in a significant weight and maintenance cost reduction compared to aluminium. FML also give the aircraft engineer additional design freedom, such as local tailoring of laminate properties. However, experience has shown that FML’s provide the aircraft manufacturer with many challenges as well. With increasing complexity of the structure, requirements from different disciplines within the engineering process will start to interfere, resulting in conflicts. This article discusses the current engineering process of FML fuselage panels as applied at Stork/Fokker Aerospace (FAESP). A case study is presented, clarifying the current design process and the way requirements start to interfere during the engineering process. A new approach based on Knowledge Engineering is discussed, implementing knowledge from engineers from all disciplines in an early stage of the design process. An automated design approach for FML fuselage panels is presented, using the same design parameters as the current approach. Because of the high complexity of the design, requirements start to conflict. Fulfilling all requirements with a traditional engineering approach results in an iterative and time consuming process. Automation of the design process, integrating knowledge and requirements from all disciplines, results in a fast and transparent design approach.

Copyright © 2005 by Delft University of Technology



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In