Full Content is available to subscribers

Subscribe/Learn More  >

A Complete Variation Algorithm for Slot and Tab Features for 3D Simulation-Based Tolerance Analysis

[+] Author Affiliations
Zhengshu Shen, Jami J. Shah, Joseph K. Davidson

Arizona State University, Tempe, AZ

Paper No. DETC2005-85541, pp. 587-597; 11 pages
  • ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 2: 31st Design Automation Conference, Parts A and B
  • Long Beach, California, USA, September 24–28, 2005
  • Conference Sponsors: Design Engineering Division and Computers and Information in Engineering Division
  • ISBN: 0-7918-4739-X | eISBN: 0-7918-3766-1
  • Copyright © 2005 by ASME


Development of tolerance analysis methods that are consistent with the ASME and ISO GD&T (geometric dimensioning and tolerancing) standards is a challenging task. Such methods are the basis for creating computer-aided tools for 3D tolerance analysis and assemblability analysis. These tools, along with the others, make it possible to realize virtual manufacturing, in order to shorten lead-time and reduce cost in the product development process. Current simulation tools for 3D tolerance analysis and assemblability analysis are far from satisfactory because the underlying variation algorithms are not fully consistent with the GD&T standards. Better algorithms are still to be developed. Towards that goal, this paper proposes a complete algorithm for 3D slot features and tab features (frequently used in mechanical products) for 3D simulation-based tolerance analysis. The algorithms developed account for bonus/shift tolerances (i.e. effects from material condition specifications), and tolerance zone interaction when multiple tolerances are specified on the same feature. A case study is conducted to demonstrate the algorithm developed. The result from this work is compared with that from 1D tolerance chart method. The comparison study shows quantitatively why 1D tolerance chart method, which is popular in industry, is not sufficient for tolerance analysis, which is 3D in nature.

Copyright © 2005 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In