Full Content is available to subscribers

Subscribe/Learn More  >

Geometric Surface Features Applied to Volumetric CAE Mesh Models

[+] Author Affiliations
Yifan Chen, Basavaraj Tonshal

Ford Motor Company, Dearborn, MI

Ali Saeed

Michigan State University, East Lansing, MI

Paper No. DETC2005-84214, pp. 447-455; 9 pages
  • ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 2: 31st Design Automation Conference, Parts A and B
  • Long Beach, California, USA, September 24–28, 2005
  • Conference Sponsors: Design Engineering Division and Computers and Information in Engineering Division
  • ISBN: 0-7918-4739-X | eISBN: 0-7918-3766-1
  • Copyright © 2005 by ASME


In this paper, we discuss a way to extend a geometric surface feature framework known as Direct Surface Manipulation (DSM) into a volumetric mesh modeling paradigm that can be directly adopted by large-scale CAE applications involving models made of volumetric elements, multiple layers of surface elements or both. By introducing a polynomial-based depth-blending function, we extend the classic DSM mathematics into a volumetric form. The depth-blending function possesses similar user-friendly features as DSM basis functions permitting ease-of-control of the continuity and magnitude of deformation along the depth of deformation. Practical issues concerning the implementation of this technique are discussed in details and implementation results are shown demonstrating the versatility of this volumetric paradigm for direct modeling of complex CAE mesh models. In addition, the notion of a model-independent, volumetric-geometric feature is introduced. Motivated by modeling clay with sweeps and templates, a model-independent, catalog-able volumetric feature can be created. Deformation created by such a feature can be relocated, reoriented, duplicated, mirrored, pasted, and stored independent of the model to which it was originally applied. It can serve as a design template, thereby saving the time and effort to recreate it for repeated uses on different models (frequently seen in CAE-based Design of Experiments study).

Copyright © 2005 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In