0

Full Content is available to subscribers

Subscribe/Learn More  >

An Interval-Based Focalization Method for Decision-Making in Decentralized, Multi-Functional Design

[+] Author Affiliations
Jitesh H. Panchal, Marco Gero Fernández, Janet K. Allen, Christiaan J. J. Paredis, Farrokh Mistree

Georgia Institute of Technology, Atlanta, GA

Paper No. DETC2005-85322, pp. 413-426; 14 pages
doi:10.1115/DETC2005-85322
From:
  • ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 2: 31st Design Automation Conference, Parts A and B
  • Long Beach, California, USA, September 24–28, 2005
  • Conference Sponsors: Design Engineering Division and Computers and Information in Engineering Division
  • ISBN: 0-7918-4739-X | eISBN: 0-7918-3766-1
  • Copyright © 2005 by ASME

abstract

Multi-functional design problems are characterized by strong coupling between design variables that are controlled by stakeholders from different disciplines. This coupling necessitates efficient modeling of interactions between multiple designers who want to achieve conflicting objectives but share control over design variables. Various game-theoretic protocols such as cooperative, non-cooperative, and leader/follower have been used to model interactions between designers. Non-cooperative game theory protocols are of particular interest for modeling cooperation in multi-functional design problems. These are the focus of this paper because they more closely reflect the level of information exchange possible in a distributed environment. Two strategies for solving such non-cooperative game theory problems are: a) passing Rational Reaction Sets (RRS) among designers and combining these to find points of intersection and b) exchanging single points in the design space iteratively until the solution converges to a single point. While the first strategy is computationally expensive because it requires each designer to consider all possible outcomes of decisions made by other designers, the second strategy may result in divergence of the solution. In order to overcome these problems, we present an interval-based focalization method for executing decentralized decision-making problems that are common in multi-functional design scenarios. The method involves propagating ranges of design variables and systematically eliminating infeasible portions of the shared design space. This stands in marked contrast to the successive consideration of single points, as emphasized in current multifunctional design methods. The key advantages of the proposed method are: a) targeted reduction of design freedom and b) non-divergence of solutions. The method is illustrated using two sample scenarios — solution of a decision problem with quadratic objectives and the design of multi-functional Linear Cellular Alloys (LCAs). Implications include use of the method to guide design space partitioning and control assignment.

Copyright © 2005 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In