0

Full Content is available to subscribers

Subscribe/Learn More  >

Faster Generation of Feasible Design Points

[+] Author Affiliations
Bernard Yannou, Faysal Moreno

Ecole Centrale Paris, Châtenay-Malabry, France

Henri J. Thevenot, Timothy W. Simpson

Pennsylvania State University, University Park, PA

Paper No. DETC2005-85449, pp. 355-363; 9 pages
doi:10.1115/DETC2005-85449
From:
  • ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 2: 31st Design Automation Conference, Parts A and B
  • Long Beach, California, USA, September 24–28, 2005
  • Conference Sponsors: Design Engineering Division and Computers and Information in Engineering Division
  • ISBN: 0-7918-4739-X | eISBN: 0-7918-3766-1
  • Copyright © 2005 by ASME

abstract

Design space exploration during conceptual design is an active research field. Most approaches generate a number of feasible design points (complying with the constraints) and apply graphical post-processing to visualize correlations between variables, the Pareto frontier or a preference structure among the design solutions. The generation of feasible design points is often a statistical (Monte Carlo) generation of potential candidates sampled within initial variable domains, followed by a verification of constraint satisfaction, which may become inefficient if the design problem is highly constrained since a majority of candidates that are generated do not belong to the (small) feasible solution space. In this paper, we propose to perform a preliminary analysis with Constraint Programming techniques that are based on interval arithmetic to dramatically prune the solution space before using statistical (Monte Carlo) methods to generate candidates in the design space. This method requires that the constraints are expressed in an analytical form. A case study involving truss design under uncertainty is presented to demonstrate that the computation time for generating a given number of feasible design points is greatly improved using the proposed method. The integration of both techniques provides a flexible mechanism to take successive design refinements into account within a dynamic process of design under uncertainty.

Copyright © 2005 by ASME
Topics: Design

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In