0

Full Content is available to subscribers

Subscribe/Learn More  >

Using Q-Learning and Genetic Algorithms to Improve the Efficiency of Weight Adjustments for Optimal Control and Design Problems

[+] Author Affiliations
Kaivan Kamali, Lijun Jiang, John Yen, K. W. Wang

Pennsylvania State University, University Park, PA

Paper No. DETC2005-85303, pp. 43-50; 8 pages
doi:10.1115/DETC2005-85303
From:
  • ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 2: 31st Design Automation Conference, Parts A and B
  • Long Beach, California, USA, September 24–28, 2005
  • Conference Sponsors: Design Engineering Division and Computers and Information in Engineering Division
  • ISBN: 0-7918-4739-X | eISBN: 0-7918-3766-1
  • Copyright © 2005 by ASME

abstract

In traditional optimal control and design problems, the control gains and design parameters are usually derived to minimize a cost function reflecting the system performance and control effort. One major challenge of such approaches is the selection of weighting matrices in the cost function, which are usually determined via trial and error and human intuition. While various techniques have been proposed to automate the weight selection process, they either can not address complex design problems or suffer from slow convergence rate and high computational costs. We propose a layered approach based on Q-learning, a reinforcement learning technique, on top of genetic algorithms (GA) to determine the best weightings for optimal control and design problems. The layered approach allows for reuse of knowledge. Knowledge obtained via Q-learning in a design problem can be used to speed up the convergence rate of a similar design problem. Moreover, the layered approach allows for solving optimizations that cannot be solved by GA alone. To test the proposed method, we perform numerical experiments on a sample active-passive hybrid vibration control problem, namely adaptive structures with active-passive hybrid piezoelectric networks (APPN). These numerical experiments show that the proposed Q-learning scheme is a promising approach for.

Copyright © 2005 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In