Full Content is available to subscribers

Subscribe/Learn More  >

Modeling of Sleeved Taylor Impact Specimens

[+] Author Affiliations
William Keith Rule

State University of New York at Oswego, Oswego, NY

Paper No. PVP2003-1824, pp. 117-122; 6 pages
  • ASME 2003 Pressure Vessels and Piping Conference
  • Problems Involving Thermal Hydraulics, Liquid Sloshing, and Extreme Loads on Structures
  • Cleveland, Ohio, USA, July 20–24, 2003
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 0-7918-1695-8
  • Copyright © 2003 by ASME


Recently experimental studies have been conducted using a novel form of the Taylor impact test consisting of sleeved cylinders. A soft material of known properties (OFHC Cu) was used for the core and the tight fitting sleeve was fabricated from the material of interest (AF1410 steel). On impact the mushrooming and sliding core places the sleeve in a stress state not normally found in Taylor impact testing. This paper describes a study conducted to evaluate the feasibility of backing out Johnson-Cook strength model coefficients from measured (post-test) deformed geometries of sleeved specimens using an explicit impact code (EPIC). In addition, modifications to the sleeved concept geometry (tapered and capped core) are also explored numerically as well as the sleeve/core sliding friction coefficient.

Copyright © 2003 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In