Full Content is available to subscribers

Subscribe/Learn More  >

Computation of the Conjugating Heat Transfer of Fuel and Oxidant Separated by a Heat-Generating Cell Tube in a Solid Oxide Fuel Cell

[+] Author Affiliations
Pei-Wen Li, Laura Schaefer, Qing-Ming Wang, Minking K. Chyu

University of Pittsburgh, Pittsburgh, PA

Paper No. IMECE2002-32564, pp. 423-430; 8 pages
  • ASME 2002 International Mechanical Engineering Congress and Exposition
  • Heat Transfer, Volume 7
  • New Orleans, Louisiana, USA, November 17–22, 2002
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 0-7918-3638-X | eISBN: 0-7918-1691-5, 0-7918-1692-3, 0-7918-1693-1
  • Copyright © 2002 by ASME


A numerical model is presented in this work to compute the inter-dependent fields of flow, temperature and the concentrations of multiple gases in a single tubular solid oxide fuel cell (SOFC) system. It was supposed that the fuel gas supplied to the fuel cell is from a pre-reformer and thus contains hydrogen and proportions of carbon monoxide, carbon dioxide, steam, and methane. The model takes mixture gas properties of the fuel and oxidant as functions of the numerically obtained local temperature, pressure and species concentrations, which are inter-dependent and intimately related to the electrochemical reaction in the SOFC. In the iterative computation steps, local electrochemical parameters were simultaneously calculated based on the local parameters of pressure, temperature, and concentration of the species available at each step. Upon the convergence of the computation, both local details and the overall performance of the fuel cell could be obtained. The numerical results obtained are helpful for better understanding of the operation of SOFCs.

Copyright © 2002 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In