0

Full Content is available to subscribers

Subscribe/Learn More  >

3-D Numerical Simulation for Fuel Cell Performance

[+] Author Affiliations
Tien-Chien Jen, T. Z. Yan

University of Wisconsin at Milwaukee, Milwaukee, WI

S. H. Chan

Yuan-Ze University, Taoyuan, Taiwan

Paper No. IMECE2002-32563, pp. 409-421; 13 pages
doi:10.1115/IMECE2002-32563
From:
  • ASME 2002 International Mechanical Engineering Congress and Exposition
  • Heat Transfer, Volume 7
  • New Orleans, Louisiana, USA, November 17–22, 2002
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 0-7918-3638-X | eISBN: 0-7918-1691-5, 0-7918-1692-3, 0-7918-1693-1
  • Copyright © 2002 by ASME

abstract

A 3-D mathematical model for the PEM fuel cell including gas channel has been developed to simulate fluid flow, current density distribution, and multi-component transport. In order to understand the developing fluid flow and mass transfer process inside the fuel cell channels, the conventional Navier-Stokes equations for gas channel, and volume-averaged Navier-Stokes equations for porous gas diffusers and catalyst layer are adopted individually in this study. A set of conservation equations and species concentration equations are solved numerically in a coupled gas channel and porous media domain using the vorticity-velocity method with power law scheme. Detailed development axial velocity and secondary flow fields at various axial positions in the entrance region are presented. Polarization curves under various operating conditions are demonstrated by solving the equations for electrochemical reactions and the membrane phase potential. Compared with experimental data from published literatures, numerical results of this model agree closely with experimental results. Finally, mass transport equations are solved at a preset condition of electrochemical reaction, and oxygen and hydrogen mole fraction distribution fields are displayed.

Copyright © 2002 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In