0

Full Content is available to subscribers

Subscribe/Learn More  >

Microelectronic Cooling Techniques Using Single and Dual Oscillatory Impinging Air Jets

[+] Author Affiliations
Victor Adrian Chiriac, Tien-Yu Tom Lee

Motorola, Inc., Tempe, AZ

Jorge Luis Rosales

Phoenix Analysis & Design Technologies, Tempe, AZ

Paper No. IMECE2002-39243, pp. 171-178; 8 pages
doi:10.1115/IMECE2002-39243
From:
  • ASME 2002 International Mechanical Engineering Congress and Exposition
  • Heat Transfer, Volume 7
  • New Orleans, Louisiana, USA, November 17–22, 2002
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 0-7918-3638-X | eISBN: 0-7918-1691-5, 0-7918-1692-3, 0-7918-1693-1
  • Copyright © 2002 by ASME

abstract

A numerical investigation was performed to compare the flow and heat transfer characteristics for microelectronics cooling scenarios. The first cooling method uses a single unsteady/oscillatory impinging air jet while the second method uses dual unsteady impinging air jets. The unsteady confined impinging jet flow has proven to enhance the heat transfer, thus reducing the prohibitive temperatures in high-powered chips. Past a specific Reynolds number range, the jet core becomes distorted and buckles, leading to a sweeping motion of the jet tip. Due to these combined motions, the effective cooled area is notably enhanced thereby reducing the power needed to cool the components placed on the PCB (Printed Circuit Board). A comparison between the unsteady laminar impinging jet and the dual unsteady impinging jets reveals that at the same flow rate, the heat transfer enhancement provided by the single unsteady jet is at least 5–8 times better than that for the dual jets. This cooling enhancement significantly reduces the temperature increase by almost 50 percent. The oscillatory impinging jet cooling technique does not require the incorporation of costly heat sinks and heat spreaders or the unnecessary increase of blower work. This technique provides effective cooling at significantly lower pumping powers with reduced manufacturing and operating costs.

Copyright © 2002 by ASME
Topics: Cooling , Air jets

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In