Full Content is available to subscribers

Subscribe/Learn More  >

Transport Phenomena in Two-Phase Micro-Channel Heat Sinks

[+] Author Affiliations
Weilin Qu, Issam Mudawar

Purdue University, West Lafayette, IN

Paper No. IMECE2002-33711, pp. 135-147; 13 pages
  • ASME 2002 International Mechanical Engineering Congress and Exposition
  • Heat Transfer, Volume 7
  • New Orleans, Louisiana, USA, November 17–22, 2002
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 0-7918-3638-X | eISBN: 0-7918-1691-5, 0-7918-1692-3, 0-7918-1693-1
  • Copyright © 2002 by ASME


The design and reliable operation of a two-phase micro-channel heat sink require a fundamental understanding of the complex transport phenomena associated with convective boiling in small, parallel coolant passages. This understanding is the primary goal of this paper. This goal is realized by exploring the following aspects of boiling in micro-channels: hydrodynamic instability, two-phase flow patterns, pressure drop, and convective boiling heat transfer. High-speed photographic methods were used to determine dominant flow patterns and explore as well as characterize hydrodynamic instabilities. Two types of dynamic instability were identified, a severe pressure drop oscillation and a mild parallel channel instability, and a simple method is recommended to completely suppress the former. Predictions of three popular two-phase pressure drop models and correlations were compared to micro-channel water data, and only a separated flow (Lockhart-Martinelli) correlation based on the assumption of laminar flow in both phases gave acceptable predictions. Several popular heat transfer correlations were also examined and deemed unsuitable for micro-channel heat sinks because all these correlations are based on turbulent flow assumptions, and do not capture the unique features of micro-channel flow such as abrupt transition to slug flow, hydrodynamic instability, and high droplet entrainment in the annular regime. These findings point to the need for further study of boiling behavior and new predictive tools specifically tailored to micro-channel heat sinks.

Copyright © 2002 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In