Full Content is available to subscribers

Subscribe/Learn More  >

Electron Transport and Anode Heating Due to Field Emission From Carbon Nanotubes

[+] Author Affiliations
D. G. Walker

Vanderbilt University, Nashville, TN

T. S. Fisher

Purdue University, West Lafayette, IN

Paper No. IMECE2002-32126, pp. 91-98; 8 pages
  • ASME 2002 International Mechanical Engineering Congress and Exposition
  • Heat Transfer, Volume 7
  • New Orleans, Louisiana, USA, November 17–22, 2002
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 0-7918-3638-X | eISBN: 0-7918-1691-5, 0-7918-1692-3, 0-7918-1693-1
  • Copyright © 2002 by ASME


Carbon nanotubes (CNT) are being considered for field emission applications because of their low turn-on voltage and ability to support large current densities. The localization of emission and large currents from CNTs result in significant anode heating. The present work investigates the electron energy distribution at the anode surface through simulation of the field emission process and the trajectory of electrons across the vacuum gap. Field emission is modeled by Fowler-Nordheim-like expressions where the emission site is assumed to be a ring with the diameter of a nanotube. The electron trajectory is determined through a Monte Carlo simulation including Coulomb interactions between electrons. Results indicate that the electron beam spreads due to Coulomb interaction, but that the initial ring is preserved. In fact, the ring diameter at the anode spreads to 3μ per 10μ of vacuum gap in a field of 10 Vμm. This estimate matches well with reported observations. Further, the spreading becomes more significant with increased fields due to the higher current density of field emitted electrons.

Copyright © 2002 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In