Full Content is available to subscribers

Subscribe/Learn More  >

Monte Carlo Modeling of Heat Generation in Electronic Nanostructures

[+] Author Affiliations
Eric Pop, Sanjiv Sinha, Kenneth E. Goodson

Stanford University, Stanford, CA

Paper No. IMECE2002-32124, pp. 85-90; 6 pages
  • ASME 2002 International Mechanical Engineering Congress and Exposition
  • Heat Transfer, Volume 7
  • New Orleans, Louisiana, USA, November 17–22, 2002
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 0-7918-3638-X | eISBN: 0-7918-1691-5, 0-7918-1692-3, 0-7918-1693-1
  • Copyright © 2002 by ASME


This work develops a Monte Carlo (MC) simulation method for calculating the heat generation rate in electronic nanostructures. Electrons accelerated by the electric field scatter strongly with optical phonons, yet heat transport in silicon occurs via the faster acoustic modes. The MC method incorporates the appropriate energy transfer rates from electrons to each phonon branch. This accounts for the non-equilibrium energy exchange between the electrons and phonon branches. Using the MC method with an electron energy-dependent scattering rate intrinsically accounts for the non-locality of the heat transfer near a strongly peaked electric field. This approach provides more information about electronically generated heat at nanoscale dimensions compared to traditional macroscopic field-dependent methods. The method has applications in any region of high spatial or temporal non-equilibrium between electrons and phonons, and particularly facilitates careful microscopic analysis of heating in a nanoscale transistor.

Copyright © 2002 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In