Full Content is available to subscribers

Subscribe/Learn More  >

Transient Heat Transfer in Microscale Porous Materials Heated by Microsecond Laser Pulse of High Power Density

[+] Author Affiliations
Fangming Jiang, Dengying Liu

Chinese Academy of Sciences, Beijing, China

Jim S.-J. Chen, Richard S. Cohen

Temple University, Philadelphia, PA

Paper No. IMECE2002-32115, pp. 31-38; 8 pages
  • ASME 2002 International Mechanical Engineering Congress and Exposition
  • Heat Transfer, Volume 7
  • New Orleans, Louisiana, USA, November 17–22, 2002
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 0-7918-3638-X | eISBN: 0-7918-1691-5, 0-7918-1692-3, 0-7918-1693-1
  • Copyright © 2002 by ASME


A novel experimental method was developed to measure the rapid transient temperature variations (heating rate > 107 K/s) of porous samples heated by high surface heat fluxes. With a thin film (0.1 μm thick) resistance thermometer of platinum as the temperature sensor and a super-high speed digital oscilloscope (up to 100 MHz) as the data recorder, rapid transient temperature variation in a porous material heated by a microsecond laser pulse of high power density is measured. Experimental results indicate that for high heat transfer cases (q′ > 109 W/m2 ) with short durations (5 – 20 μs) of heating, non-Fourier heat conduction behaviors appear. The non-Fourier hyperbolic heat conduction model and the traditional Fourier parabolic model are employed to simulate this thermal case respectively and the FDM is used to perform the numerical analysis. The hyperbolic model predicts thermal wave behavior in qualitative agreement with the experimental data.

Copyright © 2002 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In