Full Content is available to subscribers

Subscribe/Learn More  >

Marangoni and Variable Viscosity Phenomena in Picoliter Size Solder Droplet Deposition

[+] Author Affiliations
M. Dietzel, S. Haferl, Y. Ventikos, D. Poulikakos

Swiss Federal Institute of Technology, Zurich, Switzerland

Paper No. IMECE2002-32111, pp. 15-22; 8 pages
  • ASME 2002 International Mechanical Engineering Congress and Exposition
  • Heat Transfer, Volume 7
  • New Orleans, Louisiana, USA, November 17–22, 2002
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 0-7918-3638-X | eISBN: 0-7918-1691-5, 0-7918-1692-3, 0-7918-1693-1
  • Copyright © 2002 by ASME


This numerical investigation studied the effects which the temperature dependence of surface tension (Marangoni phenomenon) and viscosity has on the spreading, the transient behavior and final post-solidification shape of a molten Sn63Pb solder droplet deposited on a flat substrate. A Lagrangian finite element formulation of the complete axisymmetric Navier-Stokes equations was utilized for the description of the droplet behavior. Linear temperature dependence for the surface tension and an exponential dependence for the viscosity were assumed. The initial droplet temperature was varied in 50K steps from 200°C to 500°C, whereas the substrate temperature was kept constant at 25°C. This varied the initial Reynolds number Re0 from 360 to 716 and the Marangoni number Ma from −9 to −49. The initial Weber number We0 and initial Prandtl number Pr0 were for all cases O(1) and O(10−2 ), respectively. The impact velocity and the droplet diameter remained unchanged in all cases examined at 1.5 m/s and 80 microns. A major finding of the work was that, contrary to intuition, the Marangoni effect decreased droplet spreading monotonically. Due to the Marangoni effect, surface tension forces instead of freezing arrested spreading. Droplet receding during recoiling was aided by the Marangoni effect. On the other hand, the change of viscosity with temperature showed no significant influence on the outcome of the droplet impact.

Copyright © 2002 by ASME
Topics: Solders , Viscosity



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In