0

Full Content is available to subscribers

Subscribe/Learn More  >

Adaptive Hot-Spot Cooling of Integrated Circuits Using Digital Microfluidics

[+] Author Affiliations
Phil Paik, Vamsee K. Pamula, Krishnendu Chakrabarty

Duke University

Paper No. IMECE2005-81081, pp. 673-678; 6 pages
doi:10.1115/IMECE2005-81081
From:
  • ASME 2005 International Mechanical Engineering Congress and Exposition
  • Microelectromechanical Systems
  • Orlando, Florida, USA, November 5 – 11, 2005
  • Conference Sponsors: Microelectromechanical Systems Division
  • ISBN: 0-7918-4224-X | eISBN: 0-7918-3769-6
  • Copyright © 2005 by ASME

abstract

Thermal management is becoming an increasingly important issue in integrated circuit (IC) design. The ability to cool ICs is quickly reaching a limit with today’s package-level solutions. While a number of novel cooling methods have been introduced, many of which are microfluidic approaches, these methods are unable to adaptively address the uneven thermal profiles and hot-spots generated in high performance ICs. In this paper, we present a droplet-based digital microfluidic cooling system for ICs that can adaptively cool hot-spots through real-time reprogrammable flow. This paper characterizes the effectiveness of microliter-sized droplets for cooling by determining the heat transfer coefficient of a droplet shuttling back and forth in an open system over a hot-spot at various speeds. Cooling is found to be significantly enhanced at higher flow rates of droplets. In order to further enhance cooling, the effect of varying droplet aspect ratio (width/height) in a confined system was also studied.

Copyright © 2005 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In