0

Full Content is available to subscribers

Subscribe/Learn More  >

Experimental Study of Entrance Effects on Laminar Gas Flow Through Silicon Orifices

[+] Author Affiliations
Aaron J. Knobloch, Joell R. Hibshman, Rich Saia

General Electric Global Research

George Wu

General Electric Sensing

Paper No. IMECE2005-80230, pp. 655-660; 6 pages
doi:10.1115/IMECE2005-80230
From:
  • ASME 2005 International Mechanical Engineering Congress and Exposition
  • Microelectromechanical Systems
  • Orlando, Florida, USA, November 5 – 11, 2005
  • Conference Sponsors: Microelectromechanical Systems Division
  • ISBN: 0-7918-4224-X | eISBN: 0-7918-3769-6
  • Copyright © 2005 by ASME

abstract

This study summarizes a fundamental investigation of flow through an array of silicon micromachined rectangular slots. The purpose of the study is to evaluate the effect of entrance pressure, flow area, orifice thickness, slot length, and slot width of the orifice on flow rate. These orifices were fabricated using a simple frontside through wafer DRIE process on a 385 μm thick wafer and wafer bonding to create thicker orifices. The dies were then packaged as part of a TO8 can and flow tested. To complement the results of this experimental work, two simple flow models were developed to predict the effect of geometrical and entrance conditions on the flow rate. These models were based on macroscale assumptions that were not necessarily true in the case of thin orifices. One relationship was based on Pouiselle flow which assumes fully developed flow conditions. Calculation of the entry length required for fully developed flow indicate that in the low Reynolds Number regime (32-550) evaluated, the entry flow development requires 2-8 times the thickness of the thickest orifices used for this study. Therefore, calculations of orifice flow based on a Pouiselle model are an overestimate of the actual measured flow rates. Another model examined typical orifice relationships using head loss at the entrance and exit of the slots did not accurately capture the particular flow rates since it overestimated the expansion or constriction losses. A series of experiments where the pressure was varied between 75 and 1000 Pa were performed. A comparison of the Pouiselle flow solution with experimental results was made which showed that the Pouiselle flow model overpredicts the flow rates and more specifically, the effect of width on the flow rates. The results of these tests were used to develop a transfer function which describes the dependence of flow rate on orifice width, thickness, length, and inlet pressure.

Copyright © 2005 by ASME
Topics: Gas flow , Orifices , Silicon

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In