Full Content is available to subscribers

Subscribe/Learn More  >

Non-Equilibrium Molecular Dynamics Approach for Nano-Electro-Mechanical Systems: Nano-Fluidics and Its Applications

[+] Author Affiliations
Changsung Sean Kim

Samsung Electro-Mechanics Company, Ltd.

Paper No. IMECE2005-79628, pp. 641-646; 6 pages
  • ASME 2005 International Mechanical Engineering Congress and Exposition
  • Microelectromechanical Systems
  • Orlando, Florida, USA, November 5 – 11, 2005
  • Conference Sponsors: Microelectromechanical Systems Division
  • ISBN: 0-7918-4224-X | eISBN: 0-7918-3769-6
  • Copyright © 2005 by ASME


A three-dimensional non-equilibrium molecular dynamics code has been developed and evaluated to provide fundamental understandings of nano-fluidics at molecular level. Intermolecular energy and force between fluid-fluid and fluid-wall particles were all included. Molecular dynamics results were verified by simulating both homogeneous and heterogeneous flows in a nano-tube and then compared with the classical Navier-Stokes solution with non-slip wall boundary conditions. At equilibration state, the macroscopic parameters were calculated using the statistical calculation. Liquid argon fluids within platinum walls were simulated for a homogeneous system. Also positively charged particles are mixed with water-like solvent particles to investigate the non-Newtonian behavior of the heterogeneous fluid. For an electrowetting phenomenon, a positive charged droplet moving on the negative charged ultra thin film was successfully simulated and compared with a macroscopic experiment. Nano-jetting mechanism was identified by simulating droplet ejection, breakup, wetting, and drying process in a consequent manner. In addition, conceptual nano/micropumps using electrowetting phenomenon are simulated. The present molecular dynamics approach showed its promising capability for the wide range of NEMS/MEMS applications

Copyright © 2005 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In