Full Content is available to subscribers

Subscribe/Learn More  >

Effective Range of Micro and Synthetic Jets for Flow Control

[+] Author Affiliations
Mehti Koklu, Nurhak Erbas, Oktay Baysal

Old Dominion University

Paper No. IMECE2005-81432, pp. 487-496; 10 pages
  • ASME 2005 International Mechanical Engineering Congress and Exposition
  • Microelectromechanical Systems
  • Orlando, Florida, USA, November 5 – 11, 2005
  • Conference Sponsors: Microelectromechanical Systems Division
  • ISBN: 0-7918-4224-X | eISBN: 0-7918-3769-6
  • Copyright © 2005 by ASME


Effectiveness of two-dimensional synthetic jet is studied using numerical simulations. A Navier-Stokes (NS) solver for moving and deforming meshes has been modified to investigate numerically the diaphragm-driven flow in and out of two synthetic jet cavity geometries. Compressible flow simulations are required for rarefied gas flows to accurately predict the micro flow field. The solver is modified to accommodate slip wall boundary condition proposed in literature for micro scale flow problems. The piezoelectric-driven diaphragm of the cavity is modeled in a realistic manner as a moving boundary to accurately compute the flow inside the jet cavity. The primary focus of the proposed paper will be on the analysis of the design space determined by the geometric and flow-type design variables that identify the effectiveness of the synthetic jet by means of the orifice jet velocity and local jet momentum rate. The design variables are the membrane oscillation frequency (f), membrane oscillation amplitude (A), orifice width (d), and membrane width (W). The present computations for jet discharging into quiescent medium reveal that these variables have determining effects on the flow control parameters, which are the jet exit velocity, local momentum rate, as well as vortex shedding from the orifice.

Copyright © 2005 by ASME
Topics: Jets , Flow control



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In