0

Full Content is available to subscribers

Subscribe/Learn More  >

Effects of Rotary Inertia and Shear Deformation on Nonlinear Vibration of Micro/Nano-Beam Resonators

[+] Author Affiliations
Asghar Ramezani, Aria Alasty

Sharif University of Technology

Paper No. IMECE2005-80204, pp. 439-445; 7 pages
doi:10.1115/IMECE2005-80204
From:
  • ASME 2005 International Mechanical Engineering Congress and Exposition
  • Microelectromechanical Systems
  • Orlando, Florida, USA, November 5 – 11, 2005
  • Conference Sponsors: Microelectromechanical Systems Division
  • ISBN: 0-7918-4224-X | eISBN: 0-7918-3769-6
  • Copyright © 2005 by ASME

abstract

In this paper, the large amplitude free vibration of a doubly clamped microbeam is considered. The effects of shear deformation and rotary inertia on the large amplitude vibration of the microbeam are investigated. To this end, first Hamilton’s principle is used in deriving the partial differential equation of the microbeam response under the mentioned conditions. Then, implementing the Galerkin’s method the partial differential equation is converted to an ordinary nonlinear differential equation. Finally, the method of multiple scales is used to determine a second order perturbation solution for the obtained ODE. The results show that nonlinearity acts in the direction of increasing the natural frequency of the doubly clamped microbeam. Shear deformation and rotary inertia have significant effects on the large amplitude vibration of thick and short microbeams.

Copyright © 2005 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In