0

Full Content is available to subscribers

Subscribe/Learn More  >

An Improved Analytical Model for Deflections of a Circular Multi-Layer Piezoelectric Actuator

[+] Author Affiliations
Mandar Deshpande, Laxman Saggere

University of Illinois at Chicago

Paper No. IMECE2005-79818, pp. 415-423; 9 pages
doi:10.1115/IMECE2005-79818
From:
  • ASME 2005 International Mechanical Engineering Congress and Exposition
  • Microelectromechanical Systems
  • Orlando, Florida, USA, November 5 – 11, 2005
  • Conference Sponsors: Microelectromechanical Systems Division
  • ISBN: 0-7918-4224-X | eISBN: 0-7918-3769-6
  • Copyright © 2005 by ASME

abstract

Models for simple closed-form analytical solutions for accurately predicting static deflections of circular thin-film piezoelectric microactuators are very useful in design and optimization of a variety of MEMS sensors and actuators utilizing piezoelectric actuators. While closed-form solutions treating actuators with simple geometries such as cantilevers and beams are available, simple analytical models treating circular bending-type actuators commonly used in MEMS applications are generally lacking. This paper presents a closed-form analytical solution for accurately estimating the deflections and the volume displacements of a circular multi-layer piezoelectric actuator under combined voltage and pressure loading. The model for the analytical solution presented in this paper, which is based on classical laminated plate theory, allows for inclusion of multiple layers and non-uniform diameters of various layers in the actuator including bonding and electrode layers, unlike other models previously reported in the literature. The analytical solution presented is validated experimentally as well as through a finite element solution and excellent experiment-model correlation within 1% variation is demonstrated. General guidelines for optimization of circular piezoelectric actuator are also discussed. The utility of the model for design optimization of a multi-layered piezoelectric actuator is demonstrated through a numerical example wherein the dimensions of a test actuator are optimized to improve the displaced volume by three-fold under combined voltage and resisting pressure loads.

Copyright © 2005 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In