0

Full Content is available to subscribers

Subscribe/Learn More  >

Development of a High Sensitivity Three-Axis Force/Torque Sensor for Microassembly

[+] Author Affiliations
Scott E. Rose, James F. Jones

Sandia National Laboratories

Eniko T. Enikov

University of Arizona

Paper No. IMECE2005-79583, pp. 405-409; 5 pages
doi:10.1115/IMECE2005-79583
From:
  • ASME 2005 International Mechanical Engineering Congress and Exposition
  • Microelectromechanical Systems
  • Orlando, Florida, USA, November 5 – 11, 2005
  • Conference Sponsors: Microelectromechanical Systems Division
  • ISBN: 0-7918-4224-X | eISBN: 0-7918-3769-6
  • Copyright © 2005 by ASME

abstract

There is a growing need for multi-axis force torque (F/T) sensors to aid in the assembly of micro-scale devices. Many current generation robotic microassembly systems lack the force-feedback needed to facilitate automating common assembly tasks, such as peg-in-hole insertions. Currently, most microassembly operations use vision systems to align components being assembled. However, it is difficult to view high aspect ratio component assemblies under high magnification due to the resulting limited depth-of-field. In addition, this difficulty is compounded as assembly tolerances approach dimensions resolvable with optics or if the mating parts are delicate. This paper describes the development of a high sensitivity F/T sensor. Optimal design theory was applied to determine the configuration that would result in the most sensitive and accurate sensor. Calibration experiments demonstrated that the sensor can resolve down to 200μN and possibly less.

Copyright © 2005 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In