Full Content is available to subscribers

Subscribe/Learn More  >

ARCTIC: A Rotary Compressor Thermally Insulated µCooler

[+] Author Affiliations
Joshua D. Heppner, David C. Walther, Albert P. Pisano

University of California at Berkeley

Paper No. IMECE2005-82142, pp. 287-294; 8 pages
  • ASME 2005 International Mechanical Engineering Congress and Exposition
  • Microelectromechanical Systems
  • Orlando, Florida, USA, November 5 – 11, 2005
  • Conference Sponsors: Microelectromechanical Systems Division
  • ISBN: 0-7918-4224-X | eISBN: 0-7918-3769-6
  • Copyright © 2005 by ASME


Microscale cooling to date relies largely on passive on-chip cooling in order to move heat from hot spots to alternate sites. Such passive cooling devices include capillary pump loops (CPL), heat pipes, and thermosiphons. Recent developments for active cooling systems include thermal electric coolers (TECs) for heat removal. This paper focuses on the design of an active microscale closed loop cooling system that uses a Rankine vapor compression cycle cooling system. In this design, a rotary compressor will generate the high pressure required for efficient cooling and will circulate the working fluid to move heat away from chip level hot spots to the ambient. The rotary compressor will leverage technology gained from the Rotary Engine Power System (REPS) program at the UC Berkeley, most specifically the 367 mm3 displacement platform. The advantage of a Wankel (Maillard) compressor is that it provides six compression strokes per revolution rather than a single compression stroke common to other popular compressors such as the rolling piston. The current Wankel compressor design will achieve a theoretical compression ratio of 8:1. The ARCTIC (A Rotary Compressor Thermally Insulated μCooler) system will be a microscale hybrid system consisting of some microfabricated (or MEMS) components including microchannels, in plane MEMS valves, and potentially MEMS temperature, pressure and flow sensors integrated with mesoscale, traditionally machined steel components, including the compressor itself. The system is designed to remove between 25-35 W of heat at 1000 rpm using R-134a but the system is easily scaleable through a speed increase or decrease of the compressor. Further, the current compressor design has a theoretical coefficient of performance (C.O.P.) of approximately 2, a significant improvement over comparable TECs with C.O.P.s of approximately .05-.1. Finally, a thermal circuit analysis determines that the time constant to achieve refrigeration temperature in 12 seconds is possible.

Copyright © 2005 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In