Full Content is available to subscribers

Subscribe/Learn More  >

Low Pressure Turbine Lapse Rate Study: CFD Model vs. Rig Data

[+] Author Affiliations
J.-S. Liu, G. B. Heitland, D. B. Bush, M. L. Mansour

Honeywell Engines, Systems and Services, Phoenix, AZ

M. L. Celestina

A.P. Solutions, Inc., Cleveland, OH

J. J. Adamczyk

NASA Glenn Research Center, Cleveland, OH

Paper No. GT2002-30542, pp. 937-945; 9 pages
  • ASME Turbo Expo 2002: Power for Land, Sea, and Air
  • Volume 5: Turbo Expo 2002, Parts A and B
  • Amsterdam, The Netherlands, June 3–6, 2002
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-3610-X | eISBN: 0-7918-3601-0
  • Copyright © 2002 by ASME


As an aircraft engine operates from sea level take-off (SLTO) to altitude cruise, the low pressure (LP) turbine Reynolds number decreases. As Reynolds number is reduced the condition of the airfoil boundary layer shifts from bypass transition to separated flow transition. This can result in a significant loss. The LP turbine performance fall-off from SLTO to altitude cruise, due to the loss increase with reduction in Reynolds number, is referred to as a lapse rate. A considerable amount of research in recent years has been focused on understanding and reducing the loss associated with the low Reynolds number operation. A recent 3-1/2 stage LP turbine design completed a component rig test program at Honeywell. The turbine rig test included Reynolds number variation from SLTO to altitude cruise conditions. While the rig test provides detailed inlet and exit condition measurements, the individual blade row effects are not available. Multi-blade row computational fluid dynamics (CFD) analysis is used to complement the rig data by providing detailed flow field information through each blade row. A multi-blade row APNASA model was developed and solutions were obtained at the SLTO and altitude cruise rig conditions. The APNASA model predicts the SLTO to altitude lapse rate within 0.2 point compared to the rig data. The global agreement verifies the modeling approach and provides a high confidence level in the blade row flow field predictions. Additional Reynolds number investigation with APNASA will provide guidance in the LP turbine Reynolds number research areas to reduce lapse rate. To accurately predict the low Reynolds number flow in the LP turbine is a challenging task for any computational fluid dynamic (CFD) code. The purpose of this study is to evaluate the capability of a CFD code, APNASA, to predict the sensitivity of the Reynolds number in LP turbines.

Copyright © 2002 by ASME
Topics: Pressure , Turbines



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In