Full Content is available to subscribers

Subscribe/Learn More  >

A Nanoindentation-Based Microbridge Testing Method for Mechanical Characterization of Thin Films for MEMS Applications

[+] Author Affiliations
Zhiqiang Cao, Xin Zhang

Boston University

Tong-Yi Zhang

Hong Kong University of Science and Technology

Paper No. IMECE2005-80288, pp. 221-228; 8 pages
  • ASME 2005 International Mechanical Engineering Congress and Exposition
  • Microelectromechanical Systems
  • Orlando, Florida, USA, November 5 – 11, 2005
  • Conference Sponsors: Microelectromechanical Systems Division
  • ISBN: 0-7918-4224-X | eISBN: 0-7918-3769-6
  • Copyright © 2005 by ASME


Plasma-enhanced chemical vapor deposited (PECVD) silane-based oxides (SiOx ) have been widely used in both microelectronics and MEMS (MicroElectroMechanical Systems) to form electrical and/or mechanical components. In this paper, a novel nanoindentation-based microbridge testing method is developed to measure both the residual stresses and Young’s modulus of PECVD SiOx films on silicon wafers. Theoretically, we considered both the substrate deformation and residual stress in the thin film and derived a closed formula of deflection versus load. The formula fitted the experimental curves almost perfectly, from which the residual stresses and Young’s modulus of the film were determined. Experimentally, freestanding microbridges made of PECVD SiOx films were fabricated using the silicon undercut bulk micromachining technique. The results showed that the as-deposited PECVD SiOx films had a residual stress of −155±17 MPa and a Young’s modulus of 74.8±3.3 GPa.

Copyright © 2005 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In