Full Content is available to subscribers

Subscribe/Learn More  >

Effects of Riblets on the Loss Behavior of a Highly Loaded Compressor Cascade

[+] Author Affiliations
Matthias Boese, Leonhard Fottner

Universität der Bundeswehr München, Neubiberg, Germany

Paper No. GT2002-30438, pp. 743-750; 8 pages
  • ASME Turbo Expo 2002: Power for Land, Sea, and Air
  • Volume 5: Turbo Expo 2002, Parts A and B
  • Amsterdam, The Netherlands, June 3–6, 2002
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-3610-X | eISBN: 0-7918-3601-0
  • Copyright © 2002 by ASME


An experimental investigation of the influence of riblet surface structures on the loss behavior of a highly loaded compressor cascade V103-180 featuring a large chord length for high spatial resolution of the flow phenomena was performed. The cascade experiments were carried out at the High Speed Cascade Wind Tunnel of the University of the Armed Forces Munich in order to simulate realistic Mach and Reynolds numbers. The riblets used for the first investigation are of symmetric v-groove type with heights of 0.0762, 0.1143 and 0.1524 mm, respectively [1]. With two total pressure probes simultaneously traversed over one pitch behind the center airfoil, the local total pressure difference between the structured and the smooth blade is determined. From these measurements, the total pressure loss coefficient can be evaluated. For a better understanding of the flow phenomena, the profile pressure distribution is measured for the smooth and the structured blade. Boundary layer calculations were performed in order to optimise the riblet size for the design conditions of the compressor cascade. Resulting from the measurements an optimised riblet configuration (size and shape) has been manufactured and transferred to the cascade. Further flow measurements have been performed in order to evaluate the total pressure loss coefficient. Additional insight into the flow phenomena of the boundary layer has been achieved by laser-two-focus measurements. The experimental results indicate that the riblets mainly influence the suction side boundary layer behaviour. The ideal dimensionless groove height is obtained h+ = 9 leading to a reduction of the loss coefficient of 6–8%. Values of h+ > 20 cause an increase of the loss coefficient due to the development of a turbulent boundary layer separation.

Copyright © 2002 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In