Full Content is available to subscribers

Subscribe/Learn More  >

Wake, Shock and Potential Field Interactions in a 1.5 Stage Turbine: Part I — Vane-Rotor and Rotor-Vane Interaction

[+] Author Affiliations
R. J. Miller

University of Cambridge, Cambridge, UK

R. W. Moss

University of Newcastle, Newcastle, UK

R. W. Ainsworth

University of Oxford, Oxford, UK

N. W. Harvey

Rolls Royce plc, Derby, UK

Paper No. GT2002-30435, pp. 715-723; 9 pages
  • ASME Turbo Expo 2002: Power for Land, Sea, and Air
  • Volume 5: Turbo Expo 2002, Parts A and B
  • Amsterdam, The Netherlands, June 3–6, 2002
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-3610-X | eISBN: 0-7918-3601-0
  • Copyright © 2002 by ASME


The composition of the time-resolved surface pressure field around a high-pressure rotor blade caused by the presence of neighboring blade rows is investigated, with the individual effects of wake, shock and potential field interaction being determined. Two test geometries are considered: first, a high-pressure turbine stage coupled with a swan-necked diffuser exit duct; secondly, the same high-pressure stage but with a vane located in the downstream duct. Both tests were conducted at engine-representative Mach and Reynolds numbers, and experimental data was acquired using fast-response pressure transducers mounted on the mid-height streamline of the HP rotor blades. The results are compared to time-resolved computational predictions of the flowfield in order to aid interpretation of experimental results and to determine the accuracy with which the computation predicts blade interaction. The paper is split into two parts, the first investigating the effect of the upstream vane on the unsteady pressure field around the rotor (vane-rotor interaction) and the second investigating the effect of the downstream vane on the unsteady pressure field around the rotor (rotor-vane interaction). The paper shows that at typical design operating conditions shock interaction from the upstream blade row is an order of magnitude greater than wake interaction and that with the design vane-rotor inter-blade gap the presence of the rotor causes a periodic increase in the strength of the vane trailing edge shock. The presence of the potential field of the downstream vane is found to affect significantly the rotor pressure field downstream of the Mach one surface within each rotor passage.

Copyright © 2002 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In