Full Content is available to subscribers

Subscribe/Learn More  >

A Design Method for the Profiling of End Walls in Turbines

[+] Author Affiliations
Jonathan Hartland

Jaguar Cars, Ltd., Coventry, UK

David Gregory-Smith

University of Durham, England, UK

Paper No. GT2002-30433, pp. 697-704; 8 pages
  • ASME Turbo Expo 2002: Power for Land, Sea, and Air
  • Volume 5: Turbo Expo 2002, Parts A and B
  • Amsterdam, The Netherlands, June 3–6, 2002
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-3610-X | eISBN: 0-7918-3601-0
  • Copyright © 2002 by ASME


The profiling of end walls in turbines has proved to be effective in reducing secondary flows and losses in turbines, both in cascades and in a turbine representative rig. This paper presents a simple method for the design of end walls using the philosophy that the blade (or rather flow) curvature causes the cross passage pressure gradient, so that mirroring the blade curvature on the end-wall should assist in canceling this effect. Three alternative end-wall profiles have been designed based on the camber line of the blades. From a CFD investigation into the effects of these profiles, they should all be effective in reducing the secondary flow within the cascade. The best profile extended upstream and downstream of the blades to attempt to overcome the problems associated with sharp curvature at inlet and exit from the blade row. For the best profile the CFD predicts a 6% reduction in secondary loss and a 61% reduction in secondary kinetic energy. Whilst the loss predictions are not expected to be accurate, the reduction in secondary kinetic energy is likely to be similar to that achieved if the profile were tested experimentally. Experience with testing of an earlier end wall (Hartland et al [1]) suggests that there is likely to be a substantial reduction in secondary loss accompanying this level of reduction in secondary kinetic energy.

Copyright © 2002 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In