0

Full Content is available to subscribers

Subscribe/Learn More  >

Experimental Investigations Into Pressure Field in Tip Clearance of Shrouded Rotor Blades

[+] Author Affiliations
Krzysztof Kosowski, Marian Piwowarski

Technical University of Gdansk, Gdańsk, Poland

Paper No. GT2002-30397, pp. 675-683; 9 pages
doi:10.1115/GT2002-30397
From:
  • ASME Turbo Expo 2002: Power for Land, Sea, and Air
  • Volume 5: Turbo Expo 2002, Parts A and B
  • Amsterdam, The Netherlands, June 3–6, 2002
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-3610-X | eISBN: 0-7918-3601-0
  • Copyright © 2002 by ASME

abstract

The experimental investigations into the pressure field in the shroud clearance were performed on a one-stage air model turbine of impulse type. Measurements of pressure distribution were carried out for different rotor eccentricities, different values of axial gap and of rotor-stator misalignment, different rotor speeds and different turbine load. The experimental investigations proved that: a) the pressure in the blade tip clearance is not stationary but it pulsates, b) the effect of nozzle trailing edge can be observed in the blade shroud clearance, c) for a given turbine output, the rotor-stator eccentricity and rotor-stator misalignment appear the most important parameters influencing the pressure distribution in the shroud clearance. Aiming to investigate the pressure pulsation transmission through the leakage flow in the blade shroud clearances, pulsations of different amplitudes and frequencies were excited in the turbine inlet duct and corresponding changes of pressure were measured along the shroud width, followed by appropriate harmonic analysis. The investigations were performed for forced pulsations with frequencies ranging from 1Hz to 8 Hz. In all the examined cases, the frequency of pressure pulsations remained unchanged, while the amplitude of the pulsation decreased gradually along the tip clearance. The frequency of these pressure pulsations in the tip clearance was equal to the frequency of the pressure pulsation at the turbine stage inlet and to the frequency of pressure pulsation at the turbine flow passage’s exit.

Copyright © 2002 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In