0

Full Content is available to subscribers

Subscribe/Learn More  >

Packaging of In-Plane Thermal Microactuators for BioMEMS Applications

[+] Author Affiliations
Hrishikesh V. Panchawagh, Faheem F. Faheem, Cari F. Herrmann, David B. Serrell, Dudley S. Finch, Roop L. Mahajan

University of Colorado at Boulder

Paper No. IMECE2005-82528, pp. 49-52; 4 pages
doi:10.1115/IMECE2005-82528
From:
  • ASME 2005 International Mechanical Engineering Congress and Exposition
  • Microelectromechanical Systems
  • Orlando, Florida, USA, November 5 – 11, 2005
  • Conference Sponsors: Microelectromechanical Systems Division
  • ISBN: 0-7918-4224-X | eISBN: 0-7918-3769-6
  • Copyright © 2005 by ASME

abstract

This paper addresses two issues related to in-plane, electro-thermal actuators for BioMEMS applications. First, in order to protect the actuator from biological debris and particulates, a packaging technique using a flip-chip bonded polysilicon cap is demonstrated. The encapsulated actuator transmits motion outside the package via a piston, which moves through a small clearance. The second issue addressed is the reduction in efficiency of the thermal actuator in liquids. By coating the packaged actuator with a thin conformal hydrophobic layer via an atomic layer deposition (ALD) process, the liquid is prevented from entering the encapsulation. This avoids direct contact between the actuator and the surrounding liquid thereby improving its efficiency. The unpackaged and packaged actuators were tested in both air and de-ionized water. Although the packaging resulted in a reduction in the performance of the thermal actuator in air, the actuation efficiency in water was significantly improved due to the isolation of the hot arms from the liquid. This packaging technique is also applicable to other MEMS devices and in-plane actuators such as electrostatic comb drives for engineering as well as biological applications.

Copyright © 2005 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In