0

Full Content is available to subscribers

Subscribe/Learn More  >

Design and Characterization of a BioMEMS Device for In-Vitro Mechanical Stimulation of Single Adherent Cells

[+] Author Affiliations
Hrishikesh V. Panchawagh, David Serrell, Dudley S. Finch, Roop L. Mahajan

University of Colorado at Boulder

Tammy Oreskovic

NIST Boulder

Paper No. IMECE2005-79980, pp. 19-25; 7 pages
doi:10.1115/IMECE2005-79980
From:
  • ASME 2005 International Mechanical Engineering Congress and Exposition
  • Microelectromechanical Systems
  • Orlando, Florida, USA, November 5 – 11, 2005
  • Conference Sponsors: Microelectromechanical Systems Division
  • ISBN: 0-7918-4224-X | eISBN: 0-7918-3769-6
  • Copyright © 2005 by ASME

abstract

This paper presents development of a BioMEMS device to mechanically stimulate single adherent cells by means of electrostatic actuation. The main components of the proposed device include a platform for cell placement and an electrostatic comb drive actuator to provide in-plane motion. A high frequency actuation method was used to enable actuation in aqueous solutions. Displacements greater than 5μm were measured when the device was actuated with a 1 MHz square wave signal with 10V peak amplitude in DI water. Additionally, this device was successfully actuated in ionic solutions up to 50mM NaCl aqueous solution using frequencies greater than 30 MHz. Significant electrolysis and corrosion of the polysilicon and metal layers was observed when the devices were actuated in saline solutions with peak voltages greater than 15V, thus indicating that there is a limit on the maximum actuation voltage that can be used. No noticeable actuation was observed in phosphate buffer solution (PBS) or cell culture medium even when frequencies as high as 50 MHz were used due to ion migration. Theoretical calculations suggest that frequencies of the order of 100-500 MHz will be required for actuation in cell culture media. Currently we are in the process of building an experimental set-up to allow use of such high frequencies. Initial results for cell plating experiments on the cell stretcher platform and other considerations for device implementation are discussed in the end.

Copyright © 2005 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In