Full Content is available to subscribers

Subscribe/Learn More  >

Finite Element Analysis of Functionally Graded Shell Panels Under Thermal Loading

[+] Author Affiliations
W. Glenn Cooley

U.S. Air Force Research Laboratory

Anthony Palazotto

Air Force Institute of Technology

Paper No. IMECE2005-82776, pp. 517-526; 10 pages
  • ASME 2005 International Mechanical Engineering Congress and Exposition
  • Aerospace
  • Orlando, Florida, USA, November 5 – 11, 2005
  • Conference Sponsors: Aerospace Division
  • ISBN: 0-7918-4210-X | eISBN: 0-7918-3769-6
  • Copyright © 2005 by ASME


Functionally Graded Materials (FGM) have continuous variation of material properties from one surface to another unlike a composite which has stepped (or discontinuous) material properties. The gradation of properties in an FGM reduces the thermal stresses, residual stresses, and stress concentrations found in traditional composites. An FGM’s gradation in material properties allows the designer to tailor material response to meet design criteria. For example, the Space Shuttle utilizes ceramic tiles as thermal protection from heat generated during re-entry into the Earth’s atmosphere. However, these tiles are prone to cracking at the tile / superstructure interface due to differences in thermal expansion coefficients. An FGM made of ceramic and metal can provide the thermal protection and load carrying capability in one material thus eliminating the problem of cracked tiles found on the Space Shuttle. This paper will explore analysis of shell panels under thermal loading and compare performance of traditional homogeneous materials to FGMs using ABAQUS [1] finite element software. First, theoretical development of FGMs is presented. Second, finite element modeling technique for FGMs is discussed for a thermal stress analysis. Third, homogeneous curved panels made of ceramic and metal are analyzed under thermal loading. Finally, FGM curved panels created from a mixture of ceramic and metal are analyzed. FGM performance is compared to the homogeneous materials in order to explore the effect continuously grading material properties has on structural performance.

Copyright © 2005 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In