Full Content is available to subscribers

Subscribe/Learn More  >

Quasi-Steady Herschel-Bulkley Analysis of Magnetorheological Dampers With Preyield Viscosity

[+] Author Affiliations
Sung-Ryong Hong, Shaju John, Norman M. Wereley

University of Maryland

Paper No. IMECE2005-82593, pp. 381-390; 10 pages
  • ASME 2005 International Mechanical Engineering Congress and Exposition
  • Aerospace
  • Orlando, Florida, USA, November 5 – 11, 2005
  • Conference Sponsors: Aerospace Division
  • ISBN: 0-7918-4210-X | eISBN: 0-7918-3769-6
  • Copyright © 2005 by ASME


A magnetorheological (MR) fluid, modeled as a Bingham-plastic material, is characterized by a field dependent yield stress, and a (nearly constant) postyield plastic viscosity. Based on viscometric measurements, such a Bingham-plastic model is an idealization to physical magnetorheological behavior, albeit a useful one. A better approximation involves modifying both the preyield and postyield constitutive behavior as follows: (1) assume a high viscosity preyield behavior over a low shear rate range below the yield stress, and (2) assume a power law fluid (i.e., variable viscosity) above the yield stress that accounts for the shear thinning behavior exhibited by MR fluids above the yield stress. Such an idealization to the MR fluid’s constitutive behavior is called a viscous-power law model, or a Herschel-Bulkley model with preyield viscosity. This study develops analytical quasi-steady analysis for such a constitutive MR fluid behavior applied to a flow mode MR damper. Closed form solutions for the fluid velocity, as well as key performance metrics such as damping capacity and dynamic range (ratio of field on to field off force). Also, specializations to existing models such as the Herschel-Bulkley, the Biviscous, and the Bingham-plastic models, are shown to be easily captured by this model when physical constraints (idealizations) are placed on the rheological behavior of the MR fluid.

Copyright © 2005 by ASME
Topics: Viscosity , Dampers



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In