0

Full Content is available to subscribers

Subscribe/Learn More  >

Quasi-Steady Axisymmetric Bingham-Plastic Model of Magnetorheological Flow Damper Behavior

[+] Author Affiliations
Jin-Hyeong Yoo, Norman M. Wereley

University of Maryland

Paper No. IMECE2005-82592, pp. 375-380; 6 pages
doi:10.1115/IMECE2005-82592
From:
  • ASME 2005 International Mechanical Engineering Congress and Exposition
  • Aerospace
  • Orlando, Florida, USA, November 5 – 11, 2005
  • Conference Sponsors: Aerospace Division
  • ISBN: 0-7918-4210-X | eISBN: 0-7918-3769-6
  • Copyright © 2005 by ASME

abstract

A typical magnetorheological (MR) flow mode damper consists of a piston attached to a shaft that travels in a tightly fitting hydraulic cylinder. The piston motion makes fluid flow through an annular valve in the MR damper. An electro-magnet applies magnetic field to the MR fluid as it flows through the MR valve, and changes its yield stress. An MR fluid, modeled as a Bingham-plastic material, is characterized by a field dependent yield stress, and a (nearly constant) postyield plastic viscosity. Although the analysis of such an annular MR valve is well understood, a closed form solution for the damping capacity of a damper using such an MR valve has proven to be elusive. Closed form solutions for the velocity and shear stress profile across the annular gap are well known. However, the location of the plug must be computed numerically. As a result, closed form solutions for the dynamic range (ratio of field on to field off damper force) cannot be derived. Instead of this conventional theoretic procedure, an approximated closed form solution for a dampers dynamic range, damping capacity and other key performance metrics is derived. And the approximated solution is used to validate a rectangular duct simplified analysis of MR valves for small gap condition. These approximated equations are derived, and the approximation error is also provided.

Copyright © 2005 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In